Magnetic Topologies and Two-class Coronal Mass Ejections: a Numerical Magnetohydrodynamic Study
نویسندگان
چکیده
White-light observations of the solar corona show that there are two characteristic types of Coronal Mass Ejections (CMEs) in terms of speed-height profiles: so-called fast CMEs that attain high speeds low in the corona and slow CMEs that gradually accelerate from low initial speeds. Low and Zhang have recently proposed that fast and slow CMEs result from initial states with magnetic configurations characterized by normal prominences (NPs) and inverse prominences (IPs), respectively. To test their theory, we employed a two-dimensional, time-dependent, resistive magnetohydrodynamic code to simulate the expulsion of CMEs in these two different prominence environments. Our numerical simulations demonstrate that (i) a CME-like expulsion is more readily produced in a NP than in an IP environment, and, (ii) a CME originating from a NP environment tends to have a higher speed early in the event than one originating from an IP environment. Magnetic reconnection plays distinct roles in the two different field topologies of these two environments to produce their characteristic CME speed-height profiles. Our numerical simulations support the proposal of Low and Zhang although the reconnection development for the NP associated CME is different from the one sketched in the Low and Zhang proposal. Observational implications of our simulations are discussed. Subject headings: MHD—Sun: corona—Sun: coronal mass ejections (CMEs)— Sun: magnetic fields
منابع مشابه
Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation
We describe a method with which to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or N-shaped with polarity reversals, are produced by a radio source occulted by a moving flux rope, depending on its orientation. These curves are consistent with Helios observations, providing evide...
متن کاملSolar Mini-Dimming Kinematics and Their Positive Correlations with Coronal Mass Ejections and Prominence
Solar mini-dimmings can be detect in the Extreme Ultra-Violet coronal eruptions. Here, sequences of 171_A images taken by Solar Dynamic Observatory/Atmospheric Imaging Assembaly on 13 June 2010 are used. In this special day, both of coronal mass ejection and prominence were observed. The average velocities and accelerations of 500 mini-dimmings which were detected using on feature based classif...
متن کاملTwo-current-sheet Reconnection Model of Interdependent Flare and Coronal Mass Ejection
Time-dependent resistive magnetohydrodynamic simulations are carried out to study a flux rope eruption caused by magnetic reconnection with implication in coexistent flare-CME (coronal mass ejection) events. An early result obtained in a recent analysis of double catastrophe of a flux rope system is used as the initial condition, in which an isolated flux rope coexists with two current sheets: ...
متن کاملThe Role of Magnetic Reconnection in Solar Activity
We argue that magnetic reconnection plays the determining role in many of the various manifestations of solar activity. In particular, it is the trigger mechanism for the most energetic of solar events, coronal mass ejections and eruptive flares. We propose that in order to obtain explosive eruptions, magnetic reconnection in the corona must have an “on-off” nature, and show that reconnection i...
متن کاملA Model for Solar Coronal Mass Ejections
We propose a new model for the initiation of a solar coronal mass ejection (CME). The model agrees with two properties of CMEs and eruptive Ñares that have proved to be very difficult to explain with previous models : (1) very low-lying magnetic Ðeld lines, down to the photospheric neutral line, can open toward inÐnity during an eruption ; and (2) the eruption is driven solely by magnetic free ...
متن کامل